Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
2.
Trends Neurosci ; 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2228466

ABSTRACT

The mechanisms of olfactory dysfunction in COVID-19 are still unclear. In this review, we examine potential mechanisms that may explain why the sense of smell is lost or altered. Among the current hypotheses, the most plausible is that death of infected support cells in the olfactory epithelium causes, besides altered composition of the mucus, retraction of the cilia on olfactory receptor neurons, possibly because of the lack of support cell-derived glucose in the mucus, which powers olfactory signal transduction within the cilia. This mechanism is consistent with the rapid loss of smell with COVID-19, and its rapid recovery after the regeneration of support cells. Host immune responses that cause downregulation of genes involved in olfactory signal transduction occur too late to trigger anosmia, but may contribute to the duration of the olfactory dysfunction.

3.
Cells ; 12(3)2023 01 28.
Article in English | MEDLINE | ID: covidwho-2215623

ABSTRACT

The omicron variant is thought to cause less olfactory dysfunction than previous variants of SARS-CoV-2, but the reported prevalence differs greatly between populations and studies. Our systematic review and meta-analysis provide information regarding regional differences in prevalence as well as an estimate of the global prevalence of olfactory dysfunction based on 62 studies reporting information on 626,035 patients infected with the omicron variant. Our estimate of the omicron-induced prevalence of olfactory dysfunction in populations of European ancestry is 11.7%, while it is significantly lower in all other populations, ranging between 1.9% and 4.9%. When ethnic differences and population sizes are considered, the global prevalence of omicron-induced olfactory dysfunction in adults is estimated to be 3.7%. Omicron's effect on olfaction is twofold to tenfold lower than that of the alpha or delta variants according to previous meta-analyses and our analysis of studies that directly compared the prevalence of olfactory dysfunction between omicron and previous variants. The profile of the prevalence differences between ethnicities mirrors the results of a recent genome-wide association study that connected a gene locus encoding an odorant-metabolizing enzyme, UDP glycosyltransferase, to the extent of COVID-19-related loss of smell. Our analysis is consistent with the hypothesis that this enzyme contributes to the observed population differences.


Subject(s)
COVID-19 , Olfaction Disorders , Adult , Humans , SARS-CoV-2/genetics , Smell , Genome-Wide Association Study , Prevalence , Olfaction Disorders/epidemiology , Olfaction Disorders/genetics
4.
BMJ ; 378: e069503, 2022 07 27.
Article in English | MEDLINE | ID: covidwho-1962135

ABSTRACT

OBJECTIVE: To clarify in patients with covid-19 the recovery rate of smell and taste, proportion with persistent dysfunction of smell and taste, and prognostic factors associated with recovery of smell and taste. DESIGN: Systematic review and meta-analysis. DATA SOURCES: PubMed, Embase, Scopus, Cochrane Library, and medRxiv from inception to 3 October 2021. REVIEW METHODS: Two blinded reviewers selected observational studies of adults (≥18 years) with covid-19 related dysfunction of smell or taste. Descriptive prognosis studies with time-to-event curves and prognostic association studies of any prognostic factor were included. DATA EXTRACTION AND SYNTHESIS: Two reviewers extracted data, evaluated study bias using QUIPS, and appraised evidence quality using GRADE, following PRISMA and MOOSE reporting guidelines. Using iterative numerical algorithms, time-to-event individual patient data (IPD) were reconstructed and pooled to retrieve distribution-free summary survival curves, with recovery rates reported at 30 day intervals for participants who remained alive. To estimate the proportion with persistent smell and taste dysfunction, cure fractions from Weibull non-mixture cure models of plateaued survival curves were logit transformed and pooled in a two stage meta-analysis. Conventional aggregate data meta-analysis was performed to explore unadjusted associations of prognostic factors with recovery. MAIN OUTCOME MEASURES: The primary outcomes were the proportions of patients remaining with smell or taste dysfunction. Secondary outcomes were the odds ratios of prognostic variables associated with recovery of smell and taste. RESULTS: 18 studies (3699 patients) from 4180 records were included in reconstructed IPD meta-analyses. Risk of bias was low to moderate; conclusions remained unaltered after exclusion of four high risk studies. Evidence quality was moderate to high. Based on parametric cure modelling, persistent self-reported smell and taste dysfunction could develop in an estimated 5.6% (95% confidence interval 2.7% to 11.0%, I2=70%, τ2=0.756, 95% prediction interval 0.7% to 33.5%) and 4.4% (1.2% to 14.6%, I2=67%, τ2=0.684, 95% prediction interval 0.0% to 49.0%) of patients, respectively. Sensitivity analyses suggest these could be underestimates. At 30, 60, 90, and 180 days, respectively, 74.1% (95% confidence interval 64.0% to 81.3%), 85.8% (77.6% to 90.9%), 90.0% (83.3% to 94.0%), and 95.7% (89.5% to 98.3%) of patients recovered their sense of smell (I2=0.0-77.2%, τ2=0.006-0.050) and 78.8% (70.5% to 84.7%), 87.7% (82.0% to 91.6%), 90.3% (83.5% to 94.3%), and 98.0% (92.2% to 95.5%) recovered their sense of taste (range of I2=0.0-72.1%, τ2=0.000-0.015). Women were less likely to recover their sense of smell (odds ratio 0.52, 95% confidence interval 0.37 to 0.72, seven studies, I2=20%, τ2=0.0224) and taste (0.31, 0.13 to 0.72, seven studies, I2=78%, τ2=0.5121) than men, and patients with greater initial severity of dysfunction (0.48, 0.31 to 0.73, five studies, I2=10%, τ2<0.001) or nasal congestion (0.42, 0.18 to 0.97, three studies, I2=0%, τ2<0.001) were less likely to recover their sense of smell. CONCLUSIONS: A substantial proportion of patients with covid-19 might develop long lasting change in their sense of smell or taste. This could contribute to the growing burden of long covid. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42021283922.


Subject(s)
COVID-19 , Olfaction Disorders , COVID-19/complications , Female , Humans , Olfaction Disorders/etiology , Prognosis , Smell , Taste , Taste Disorders/etiology , Post-Acute COVID-19 Syndrome
5.
Mol Neurodegener ; 17(1): 20, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1745436

ABSTRACT

This letter draws attention to recent work supporting the notion that the SARS-CoV-2 virus may use the nervus terminalis rather than the olfactory nerve as a shortcut route from the nasal cavity to infect the brain.


Subject(s)
COVID-19 , SARS-CoV-2 , Brain , Humans
6.
ACS Chem Neurosci ; 12(19): 3535-3549, 2021 10 06.
Article in English | MEDLINE | ID: covidwho-1415906

ABSTRACT

The prevalence of chemosensory dysfunction in patients with COVID-19 varies greatly between populations. It is unclear whether such differences are due to factors at the level of the human host, or at the level of the coronavirus, or both. At the host level, the entry proteins which allow virus binding and entry have variants with distinct properties, and the frequency of such variants differs between ethnicities. At the level of the virus, the D614G mutation enhances virus entry to the host cell. Since the two virus strains (D614 and G614) coexisted in the first six months of the pandemic in most populations, it has been difficult to distinguish between contributions of the virus and contributions of the host for anosmia. To answer this question, we conducted a systematic review and meta-analysis of studies in South Asian populations when either the D614 or the G614 virus was dominant. We show that populations infected predominantly with the G614 virus had a much higher prevalence of anosmia (pooled prevalence of 31.8%) compared with the same ethnic populations infected mostly with the D614 virus strain (pooled anosmia prevalence of 5.3%). We conclude that the D614G mutation is a major contributing factor that increases the prevalence of anosmia in COVID-19, and that this enhanced effect on olfaction constitutes a previously unrecognized phenotype of the D614G mutation. The new virus strains that have additional mutations on the background of the D614G mutation can be expected to cause a similarly increased prevalence of chemosensory dysfunctions.


Subject(s)
COVID-19 , Anosmia , Humans , Mutation/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
8.
Front Cell Neurosci ; 15: 674123, 2021.
Article in English | MEDLINE | ID: covidwho-1295665

ABSTRACT

Previous studies suggested that the SARS-CoV-2 virus may gain access to the brain by using a route along the olfactory nerve. However, there is a general consensus that the obligatory virus entry receptor, angiotensin converting enzyme 2 (ACE2), is not expressed in olfactory receptor neurons, and the timing of arrival of the virus in brain targets is inconsistent with a neuronal transfer along olfactory projections. We determined whether nervus terminalis neurons and their peripheral and central projections should be considered as a potential alternative route from the nose to the brain. Nervus terminalis neurons in postnatal mice were double-labeled with antibodies against ACE2 and two nervus terminalis markers, gonadotropin-releasing hormone (GnRH) and choline acetyltransferase (CHAT). We show that a small fraction of CHAT-labeled nervus terminalis neurons, and the large majority of GnRH-labeled nervus terminalis neurons with cell bodies in the region between the olfactory epithelium and the olfactory bulb express ACE2 and cathepsins B and L. Nervus terminalis neurons therefore may provide a direct route for the virus from the nasal epithelium, possibly via innervation of Bowman's glands, to brain targets, including the telencephalon and diencephalon. This possibility needs to be examined in suitable animal models and in human tissues.

9.
bioRxiv ; 2021 Jun 07.
Article in English | MEDLINE | ID: covidwho-1262289

ABSTRACT

Previous studies suggested that the SARS-CoV-2 virus may gain access to the brain by using a route along the olfactory nerve. However, there is a general consensus that the obligatory virus entry receptor, angiotensin converting enzyme 2 (ACE2), is not expressed in olfactory receptor neurons, and the timing of arrival of the virus in brain targets is inconsistent with a neuronal transfer along olfactory projections. We determined whether nervus terminalis neurons and their peripheral and central projections should be considered as a potential alternative route from the nose to the brain. Nervus terminalis neurons in postnatal mice were double-labeled with antibodies against ACE2 and two nervus terminalis markers, gonadotropin-releasing hormone (GnRH) and choline acetyltransferase (CHAT). We show that a small fraction of CHAT-labeled nervus terminalis neurons, and the large majority of GnRH-labeled nervus terminalis neurons with cell bodies in the region between the olfactory epithelium and the olfactory bulb express ACE2 and cathepsins B and L. Nervus terminalis neurons therefore may provide a direct route for the virus from the nasal epithelium, possibly via innervation of Bowman's glands, to brain targets, including the telencephalon and diencephalon. This possibility needs to be examined in suitable animal models and in human tissues.

10.
Acta Neuropathol ; 141(6): 809-822, 2021 06.
Article in English | MEDLINE | ID: covidwho-1202748

ABSTRACT

One of the most frequent symptoms of COVID-19 is the loss of smell and taste. Based on the lack of expression of the virus entry proteins in olfactory receptor neurons, it was originally assumed that the new coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) does not infect olfactory neurons. Recent studies have reported otherwise, opening the possibility that the virus can directly infect the brain by traveling along the olfactory nerve. Multiple animal models have been employed to assess mechanisms and routes of brain infection of SARS-CoV-2, often with conflicting results. We here review the current evidence for an olfactory route to brain infection and conclude that the case for infection of olfactory neurons is weak, based on animal and human studies. Consistent brain infection after SARS-CoV-2 inoculation in mouse models is only seen when the virus entry proteins are expressed abnormally, and the timeline and progression of rare neuro-invasion in these and in other animal models points to alternative routes to the brain, other than along the olfactory projections. COVID-19 patients can be assured that loss of smell does not necessarily mean that the SARS-CoV-2 virus has gained access to and has infected their brains.


Subject(s)
Brain/virology , COVID-19/etiology , Olfactory Nerve/virology , Olfactory Receptor Neurons/virology , SARS-CoV-2/physiology , Virus Internalization , Animals , Disease Models, Animal , Humans
12.
ACS Chem Neurosci ; 11(20): 3180-3184, 2020 10 21.
Article in English | MEDLINE | ID: covidwho-807216

ABSTRACT

After several months of rapid pandemic expansion, it is now apparent that the SARS-CoV-2 coronavirus interferes with smell and taste sensation in a substantial proportion of COVID-19 patients. Recent epidemiological data documented intriguing differences in prevalence of chemosensory dysfunctions between different world regions. Viral genetic factors as well as host genetic factors appear to be relevant; however, it is not yet known which mutations or polymorphisms actually contribute to such phenotypic differences between populations. Here, we discuss recent genetic and epidemiological data on the D614G spike protein variant and assess whether current evidence is consistent with the notion that this single nucleotide polymorphism augments chemosensory impairments in COVID-19 patients. We hypothesize that this spike variant is an important viral genetic factor that facilitates infection of chemosensory epithelia, possibly acting together with yet to be identified host factors, and thereby increases smell and taste impairment. We suggest that the prevalence of chemosensory deficits may reflect the pandemic potential for transmissibility and spread which differs between populations.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/genetics , Olfaction Disorders/virology , Pneumonia, Viral/genetics , Spike Glycoprotein, Coronavirus/genetics , Taste Disorders/virology , COVID-19 , Coronavirus Infections/complications , Genes, Viral/genetics , Humans , Olfaction Disorders/genetics , Pandemics , Pneumonia, Viral/complications , Polymorphism, Single Nucleotide , SARS-CoV-2 , Taste Disorders/genetics
13.
Neuroscientist ; 27(6): 582-603, 2021 12.
Article in English | MEDLINE | ID: covidwho-760471

ABSTRACT

In recent months it has emerged that the novel coronavirus-responsible for the COVID-19 pandemic-causes reduction of smell and taste in a large fraction of patients. The chemosensory deficits are often the earliest, and sometimes the only signs in otherwise asymptomatic carriers of the SARS-CoV-2 virus. The reasons for the surprisingly early and specific chemosensory dysfunction in COVID-19 are now beginning to be elucidated. In this hypothesis review, we discuss implications of the recent finding that the prevalence of smell and taste dysfunction in COVID-19 patients differs between populations, possibly because of differences in the spike protein of different virus strains or because of differences in the host proteins that enable virus entry, thus modifying infectivity. We review recent progress in defining underlying cellular and molecular mechanisms of the virus-induced anosmia, with a focus on the emerging crucial role of sustentacular cells in the olfactory epithelium. We critically examine the current evidence whether and how the SARS-CoV-2 virus can follow a route from the olfactory epithelium in the nose to the brain to achieve brain infection, and we discuss the prospects for using the smell and taste dysfunctions seen in COVID-19 as an early and rapid diagnostic screening tool.


Subject(s)
Anosmia/complications , Anosmia/virology , Brain/virology , COVID-19/complications , COVID-19/virology , Nasal Mucosa/virology , Olfactory Perception , Animals , Anosmia/diagnosis , Anosmia/physiopathology , Brain/physiopathology , COVID-19/diagnosis , COVID-19/physiopathology , Humans , Smell
14.
ACS Chem Neurosci ; 11(19): 2944-2961, 2020 10 07.
Article in English | MEDLINE | ID: covidwho-739109

ABSTRACT

A significant proportion of people who test positive for COVID-19 have chemosensory deficits. However, the reported prevalence of these deficits in smell and taste varies widely, and the reason for the differences between studies is unclear. We determined the pooled prevalence of such chemosensory deficits in a systematic review and meta-analysis. We searched the COVID-19 portfolio of the National Institutes of Health for studies that reported the prevalence of smell or taste deficits or both in patients diagnosed with COVID-19. One-hundred-four studies reporting on 38 198 patients qualified and were subjected to a systematic review and meta-analysis. Estimated random prevalence of olfactory dysfunction was 43.0%, that of taste dysfunction was 44.6%, and that of overall chemosensory dysfunction was 47.4%. We examined the effects of age, gender, disease severity, and ethnicity on chemosensory dysfunction. Prevalence of smell or taste dysfunction or both decreased with older age, male gender, and disease severity. Ethnicity was highly significant: Caucasians had a three times higher prevalence of chemosensory dysfunctions (54.8%) than Asians (17.7%). The finding of geographic differences points to two causes that are not mutually exclusive. A virus mutation (D614G) may cause differing infectivity, while at the host level genetic, ethnicity-specific variants of the virus-binding entry proteins may facilitate virus entry in the olfactory epithelium and taste buds. Both explanations have major implications for infectivity, diagnosis, and management of the COVID-19 pandemic.


Subject(s)
Asian People/statistics & numerical data , Coronavirus Infections/physiopathology , Olfaction Disorders/ethnology , Pneumonia, Viral/physiopathology , White People/statistics & numerical data , Age Factors , Angiotensin-Converting Enzyme 2 , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/epidemiology , Ethnicity , Genetic Variation , Humans , Olfaction Disorders/epidemiology , Olfaction Disorders/physiopathology , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/epidemiology , Prevalence , SARS-CoV-2 , Serine Endopeptidases/genetics , Severity of Illness Index , Sex Factors
15.
ACS Chem Neurosci ; 11(11): 1555-1562, 2020 06 03.
Article in English | MEDLINE | ID: covidwho-197238

ABSTRACT

The COVID-19 pandemic revealed that there is a loss of smell in many patients, including in infected but otherwise asymptomatic individuals. The underlying mechanisms for the olfactory symptoms are unclear. Using a mouse model, we determined whether cells in the olfactory epithelium express the obligatory receptors for entry of the SARS-CoV-2 virus by using RNAseq, RT-PCR, in situ hybridization, Western blot, and immunocytochemistry. We show that the cell surface protein ACE2 and the protease TMPRSS2 are expressed in sustentacular cells of the olfactory epithelium but not, or much less, in most olfactory receptor neurons. These data suggest that sustentacular cells are involved in SARS-CoV-2 virus entry and impairment of the sense of smell in COVID-19 patients. We also show that expression of the entry proteins increases in animals of old age. This may explain, if true also in humans, why individuals of older age are more susceptible to the SARS-CoV-2 infection.


Subject(s)
Betacoronavirus/metabolism , Olfactory Mucosa/metabolism , Olfactory Receptor Neurons/metabolism , Peptidyl-Dipeptidase A/genetics , Serine Endopeptidases/genetics , Age Factors , Angiotensin-Converting Enzyme 2 , Animals , COVID-19 , Coronavirus Infections , Gene Expression , Gene Expression Profiling , Immunohistochemistry , In Situ Hybridization , Mice , Olfaction Disorders , Olfactory Mucosa/cytology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral , RNA-Seq , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Serine Endopeptidases/metabolism , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL